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Abstract
In this work we clarify the nature of frequent oscillations of the conductance
of open quantum dots that were reported by Liang et al (Liang C-T et al 1998
Phys. Rev. Lett. 81 3507). Continuous and almost periodic oscillations super-
imposed upon ballistic conductance features are observed when the conduct-
ance G of the dot changes within a wide range 0 < G < 6e2/h. We
confirm the single-electron origin of the conductance oscillations by means of
measurements in a perpendicular magnetic field and calculation of capacitances
of the quantum dot with respect to two-dimensional (2D) electron gas reservoirs
and gates. The calculations of the three-dimensional electrostatics of the device
and 2D transport through the dot show that the progression of the Coulomb
oscillations into the region G > 2e2/h is the consequence of suppression of
inter-one-dimensional-subband scattering. The theory of Coulomb blockade
and the Landauer formula are modified for the case of the quasi-one-dimensional
system to describe combined charging and ballistic transport through the
dot. Measured dependences of the conductance on the gate voltages and its
temperature behaviour are correctly reproduced by the calculations.

1. Introduction

Charge quantization plays a central role in electron transport through lateral quantum dots
weakly coupled to leads. It had been commonly believed, and argued for on the basis
of the validity of Coulomb blockade theory [1, 2] and various experimental results [3–13],
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that Coulomb blockade oscillations of the conductance weaken and gradually vanish as the
transparency of the barriers increases up to the conductance quantum 2e2/h. However, the
possibility of Coulomb charging in open quantum dots is now being intensively investigated
both theoretically [14–17] and experimentally [18–23]. In a series of papers, single-electron
charging was studied for the dot with one fully transmitting point-contact lead, the other
contact having the resistance R > h/e2 [16,21,22]. However, of special interest are charging
effects when the total conductance of the device is greater than 2e2/h [19, 20, 23]. In strong
magnetic fields, continuous Coulomb oscillations superimposed upon large-period oscillations
have been detected with the conductance G ranging up to G = 3e2/h [19]. Only recently
has similar experimental evidence of single-electron charging of an open quantum dot been
obtained in zero magnetic field [23]. The quantum dot was defined by two side gates, which
deplete electrons within the channel, and three narrow overlying finger gates. The outermost
finger gates introduce the entrance and exit barriers to the dot, and the central finger gate
stabilizes the depth of the potential inside the dot. The impurity scattering in the device,
fabricated on an ultrahigh-quality high-electron-mobility transistor (HEMT), is negligible.
Surprisingly, continuous and periodic oscillations superimposed upon ballistic conductance
steps were observed when the conductance through the dot changed within a wide range
0 < G < 6e2/h. A smooth transition of the oscillations from G > 2e2/h to G < 2e2/h with
decreasing barrier transparency leads to the conclusion that the oscillations are due to single-
electron charging of the quantum dot [23]. However, none of the existing theories can explain
the manifestation of single-electron oscillations over such a wide range of the conductance.

In this paper we provide additional experimental evidence confirming the charge nature
of the observed effect and explain, on the basis of realistic modelling, why the oscillations
penetrate far into the region G > 2e2/h. In the experimental part of the paper we note that
the observed frequent oscillations look similar near the onset of conductance and in the open
dot regime—that is, the oscillations remain smoothed and their period fluctuates within the
whole range 0 < G < 6e2/h in contrast to Coulomb blockade peaks, sharp and equally
spaced, observed in other quantum dots [4–13,18,22]. This behaviour could not be explained
by orthodox theory [1, 2], so we provide an additional confirmation of the Coulomb nature of
the oscillations by observing that the phase of the oscillations at G < 2e2/h does not shift
in a perpendicular magnetic field. We show that the phase of the oscillations versus side-
gate voltage uniformly shifts with increasing finger-gate voltages, as it should for charging
oscillations. We also report similar frequent conductance oscillations observed as a function
of central finger-gate voltage and superimposed on the background of regular large-scale peaks.

In the theoretical part of the paper we report realistic modelling of the 3D electrostatics
and electron transport in the quantum dot. By calculating the capacitances of the quantum
dot with respect to the gates and two-dimensional electron gas (2DEG) reservoirs, we confirm
the single-electron origin of the frequent conductance oscillations. The modelling of the 2D
electron transport shows that these oscillations are not due to resonant transmission because
in experiment they are far more frequent than the resonant peaks in the calculations. Instead,
the resonances of double-barrier Fabry–Pérot interference are associated with the large-scale
resonant features in the background conductance. Thus, in this device single-electron charging
and coherent electron transmission at 0 < G < 6e2/h coexist. In the following we discuss
how, under special circumstances, Coulomb charging effects can be present in open dots. Our
calculations demonstrate the unique versatility of this dot geometry with adjustable voltages
on the side gates and three finger gates. We show that in some voltage regimes the electro-
static potential in the plane of the 2DEG is separable as U(x, y) = U1(x) + U2(y) and thus
the device exhibits simple one-dimensional behaviour. In standard quantum dots where the
constrictions are defined by two pairs of split gates, Coulomb oscillations in zero magnetic
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field are only observable at G < 2e2/h. In order to determine the difference between this new
device and the standard quantum dot, we compare the calculated electrostatics and transport in
the two different types of dot. Our results show that inter-1D-subband scattering is suppressed
in the new type of open quantum dot, owing to the special design, whereas in the standard
quantum dots the inter-subband mixing is considerably enhanced once the transmission route
via the first subband is opened. We argue that in a 1D system, sequential tunnelling via weakly
transmitted subbands and high sensitivity of the barrier transparency in the constrictions to
the variations of the Fermi level in the dot make it possible to observe the effects of Coulomb
charging at G > 2e2/h. We modify the theory of Coulomb blockade and the Landauer formula
to model single-electron oscillations and the temperature dependence of all the features of
the conductance.

This paper is organized as follows. In section 2 the quantum dot device is described, and
the conductance of the dot versus central finger-gate voltage and the influence of magnetic field
on the observed oscillations are reported. Modelling of the basic properties of the structure is
described in section 3. First we discuss the electrostatics of the device (sections 3.1 and 3.2).
Then the calculated two-dimensional potential profile is used for modelling multiple-mode
electron transmission through the quantum dot (section 3.3). In section 3.4 we describe the
modification of Coulomb blockade theory used to simulate the observed conductance curves.
In section 3.5 we show that the observed oscillations are determined not by the current through
the localized states, but by charge-induced modulation of the ballistic current.

2. Experiment

The two-layered finger-gate pattern shown in the inset to figure 1 was defined by electron beam
lithography on the surface of a high-mobility GaAs/Al0.33Ga0.67As heterostructure, 157 nm
above a 2DEG. There is a 30 nm thick layer of polymethylmethacrylate (PMMA) which has
been highly dosed by an electron beam, to act as a dielectric [24] between the Schottky split gate
(SG) and three finger gates (F1, F2 and F3) so that all gates can be independently controlled.

After brief illumination by a red light-emitting diode, the carrier concentration of the
2DEG was 1.6 × 1015 m−2 with a mobility of 250 m2 V−1 s−1. The corresponding transport
mean free path is 16.5 µm, much longer than the effective 1D channel length. Experiments
were performed in a dilution refrigerator at T = 50 mK and the two-terminal conductance
G = dI/dV was measured using an ac excitation voltage of 10 µV with standard phase-
sensitive techniques. In all cases, a zero-split-gate-voltage series resistance (≈900 �) was
subtracted. Two samples, for five different coolings, show similar characteristics.

When a constriction was formed in the centre or at any end of the channel by changing
the voltage on an appropriate gate (SG or F2, F1 or F3), distinct quantization of the ballistic
conductance was observed (figure 1 in reference [23]). Absence of resonant features in the
transition regions and plateaux of the conductance indicate that a clean 1D channel is obtained
in which impurity scattering is negligible [23]. The quantum dot was formed only when
large negative voltages applied to both F1 and F3 (VF1 ≈ VF3 ≈ −2 V) introduced the
entrance and exit barriers to the dot. In that case, split-gate dependences of the conductance
at T = 50 mK displayed resonant features: frequent quasiperiodic oscillations superimposed
upon the background of wide steps and peaks in the conductance range 0 < G < 6e2/h

(figures 2 and 3 in reference [23]). The oscillations disappeared at the critical temperatures,
which were decreasing as the value of the background conductance increased (cf. figure 2 in
reference [23]): 2 K at G < e2/h, 1 K at e2/h < G < 2e2/h, 0.3 K at 2e2/h < G < 4e2/h

and 0.15 K at 4e2/h < G < 6e2/h.
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Figure 1. (a) G(VF2) for fixed outermost finger-gate voltages VF1,3 and split-gate voltage VSG.
(b) The oscillations without the background of large-scale ballistic conductance features, as
extracted from (a), showing the modulation of the amplitude and unstable periodicity. The inset
shows a scanning electron micrograph of a typical device. The brightest regions correspond to
finger gates with joining pads, labelled as F1, F2 and F3, lying above the split gate (labelled as
SG), with an insulating layer of cross-linked PMMA in between.

Here we report typical traces of the full conductance G measured as a function of the
central finger-gate voltage VF2, with the split-gate voltage VSG fixed (figure 1(a)). The
frequent oscillations are similar to those previously reported [23]. The peaks at G < e2/h

(VF2 < −0.5 V) are not as sharp and equally spaced as one would expect from the theory of
Coulomb blockade. Furthermore, the observed oscillations overlie the wide maxima of the
background conductance which appear periodically with VF2. The large-scale quasiperiodic
conductance peaks covered by equally spaced peaks of the Coulomb blockade at G < e2/h

have already been reported [12] and interpreted as Fabry–Pérot resonances due to coherent
electron tunnelling through the quantum dot. In our case the frequent small-amplitude
oscillations demonstrate abrupt phase changes at G < e2/h (figure 1(b)) and penetrate into
the region G > 2e2/h, where the transport is traditionally considered coherent and Coulomb
charging effects are not usually observed. Notice also that the amplitude of frequent oscillations
increases on the slopes of background conductance. This modulation of amplitude will be
explained in section 3.5.

To check that the frequent oscillations are connected to charge quantization, we studied
the conductance of the dot in a perpendicular magnetic field. Figure 2 shows dependences
G(VSG) measured at fixed finger-gate voltages and T = 50 mK as the magnetic field changed
from B = 0 to B = 20 mT for the main set-up (a) and to B = 160 mT for set-up (b). In
the case shown in figure 2(a) the oscillations do not shift along VSG when the magnetic flux
penetrating the dot area changes within 1.5 flux quanta. The oscillations at G > 2e2/h are
suppressed with increasing B. Figure 2(b) illustrates the generic case where the oscillations
at G < 2e2/h retained their position in a wide range of B (>10 flux quanta).
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Figure 2. G(VSG) for fixed finger-gate voltages with a perpendicular magnetic field changing from
B = 0 to B = 20 mT for set-up (a) and to B = 160 mT for set-up (b). The curves are vertically
offset for clarity.

It is known that the shift of the Coulomb peaks is controlled by the polarization charge
q0 which is usually assumed constant in the theory of Coulomb blockade [1]. Theory [2]
and earlier experiments with isolated quantum dots have shown that the position of Coulomb
oscillations is insensitive to perpendicular magnetic field in a wide range. The oscillations at
G < 2e2/h that we study in this paper demonstrate similar phase stability, indicating their
underlying charge-quantization origin. In reference [23] the oscillations were shown to evolve
gradually from region G < 2e2/h to G > 2e2/h with the period conserved (see below) as the
barrier transparency was increased. Therefore the period of the oscillations for the open dot
also corresponds to the change of the dot charge by one electron.

Further evidence of the electrostatic single-electron nature of the effect is derived by
observing the evolution of conductance traces G(VSG) with barrier transparency. Figure 3
demonstrates how (a) the background conductance GRA(VSG) and (b) the oscillations less the
background change with incremental voltage steps on the outermost finger gates VF1 and VF3

at T = 50 mK. One can see that the oscillations of G(VSG) gradually evolve with similar shape
and periodicity from the region G > 2e2/h to the region G < 2e2/h, indicating their common
physical origin. Note that the modulation of the oscillation amplitude in figure 3(b) allows us
to trace the movement of the oscillations along parallel lines. Thus we show that the phase
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Figure 3. Evolution of conductance G(VSG) with transparency of the barriers. (a) The running
average of the conductance of the quantum dot over 7.8 mV and (b) the oscillations with background
subtracted. Curves are successively vertically displaced for clarity.

of the oscillations depends linearly on VF. This corresponds to the conservation of the dot
charge Q = ne as defined by the simple electrostatic relation CSGVSG + CFGVF + q0 + ne = 0.
Transition to a neighbouring parallel line implies change of n by unity. Two such lines are
shown dashed in figure 3(b), where the horizontal and vertical separations between them obey
the same condition, δQ = e. The condition δQ = e can be used to find the capacitances
between the dot and the gates of the sample (table 1). The relation δQ = e will be tested
numerically in section 3.1, where we also calculate all the capacitances. Further analysis of
the dependence of the oscillations and background in the (VSG, VF) parameter plane allows us
to extract from experimental data qualitative information about ballistic transport which will
be compared with the modelling in sections 3.3 and 3.4.

Summarizing this section, the frequent oscillations observed in the conductance of the
open dot are uniform over the whole measurement range. Experimental evidence of their
single-electron nature is obtained. However, unusual behaviour of the oscillations, even in the
vicinity of pinch-off, precludes us from ascribing them to Coulomb blockade of sequential
tunnelling currents. The properties of the background conductance and oscillations will be the
subject of the theoretical examination below.
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Table 1. Calculated and measured gate-voltage periods of single-electron oscillations. In the
calculations, VF1 and VF3 were changed simultaneously, VF1 = VF3 = VF, while experimentally
the two finger gates were controlled independently. Thus, �VF should be compared with
1
2 × 1

2 (�VF1 + �VF3).

Period of oscillations Calculated (mV) Measured (mV)

�VSG 2.8–4.5 3.6 ± 1
�VF 6.6–11.5
�VF1 23.8
�VF3 25.9
�VF2 6.6–9 8.7

3. Numerical results and discussion

3.1. Electrostatics

In order to check the correspondence between the observed period of oscillations and the
change of the dot charge by one electron, and to obtain an estimate of the charging energy,
we calculated the capacitance of the dot with respect to the contacts, fingers and split gates.
The electrostatic potential profile in the device was determined by solution of the 3D Poisson
equation with a local 2DEG density given by the 2D Thomas–Fermi approximation assuming
a boundary condition of frozen charge for the surface states and impurities. It was checked
that fluctuation potential in this structure due to ionized dopants is absent due to the wide
AlGaAs spacer (100 nm). The calculation technique has been described in references [25,26].
The modelling has been carried out for the main set-up, for which all the results presented in
reference [23] and in figures 1, 2(a) and 3 were obtained.

The conformity of this fairly simple model to the experiment was checked by calculation
of the pinch-off voltages. In the calculations, at VF = 0 the channel pinches off when
VSG = −1.8 V (the same as in the experiment). When VSG = −0.7 V the finger gates raise the
potential barriers in the constrictions above the Fermi level at VF = −1.4 V (experimentally
the split gate pinches off at VSG = −0.7 V when VF1 = −1.9 V and VF3 = −1.7 V). We
ascribe this small difference between the calculated (VF) and experimental (VF1, VF3) values
to the fact that we do not take into account the capacitances of the finger gates with respect to
the shield of the structure (we also neglect electric field lines going above the PMMA layer).

We calculated the potential profile, charge distribution and the total charge of the dot, as
well as the capacitances in the ranges VSG = −0.75 to −0.5 V and VF = −1.3 to −1.4 V. This
parameter region agrees with the ranges of experimental gate voltages specified in figure 3.
Figure 4 shows the charge density for a quarter of the quantum dot for closed and open states.
Transverse cross sections of the electrostatic potential in the 2DEG are shown in insets for
two different coordinates along the channel: in the centre of the dot, and directly beneath
the outermost gates. On changing the voltage VSG, the dot transforms from a closed state (a)
to an open state (b), with a corresponding change in the width of both dot and constriction.
Figure 5(a) shows that the voltage on the outermost finger gates controls both the height of
the barriers and the width of the constrictions with little change in the depth of the dot. At
large finger-gate voltages VF1,3 = −1.3 to −1.4 V and low split-gate voltages VSG ≈ −0.5 V,
the transverse potential profile of the constriction resembles a rectangular well rather than a
parabola. With the central finger gate kept at zero voltage, the width and depth of the quantum
dot were found to depend on VSG only. On the other hand, if the voltage on the outermost
finger gates is fixed and the central finger-gate voltage is varied, it mainly changes the depth
of the potential in the quantum dot (figures 5(b), 5(c)).
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Figure 4. 3D plots of charge density in the quantum dot: (a) closed dot, VSG = −0.75 V,
VF = −1.3 V; (b) open dot, VSG = −0.5 V, VF = −1.3 V. The insets show cross sections of the
potential in the centre of the dot, at x = 0 (dashed line), and in the constriction, at x = 270 nm
(solid line).

The calculations show that the number of electrons in the dot changes from 80 to 140 as the
split-gate voltage changes from VSG = −0.7 V to −0.5 V (with fixed VF1 = VF3 = −1.3 V).
This change in the number of electrons corresponds to the number of oscillations observed on
the upper curve in figure 3(b). Calculated capacitances of the dot to the gates are also close
to the experimentally estimated ones and lie within the measured period variation (table 1).
Thus, the conclusion that each oscillation of the conductance reflects the change of the dot
charge by one electron is confirmed.
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Figure 5. The effect of finger gates on the electrostatic potential in the dot with fixed split-gate
voltage. (a) Transverse cross sections of the potential in the dot and in the constrictions for two cases,
defined by gate voltages VSG = −0.5 V, VF2 = 0, VF = −1.3 V (solid lines) and VF = −1.4 V
(dashed lines). ((b), (c)) Deformation of the dot (defined by fixed voltages VSG = −0.49 V,
VF1,3 = −1.37 V) with variation of VF2 from −0.8 V to zero with 0.2 V steps.

Introducing a small Fermi level difference between the dot and the 2DEG reservoirs,
we calculated the capacitance of the dot with respect to both contacts as Cr = 340–370 aF
for an almost closed quantum dot. The capacitance is doubled when three 1D subbands
become transmitted. Thus, this capacitance is almost an order of magnitude higher than that
to the gates and cannot be neglected, so the charging energy is e2/2C = 0.1–0.2 meV, where
C = Cr +e/�VSG +e/�VF +e/�VF2, comparable to the thermal broadening at T ≈ 1–2 K. In
reference [23] the oscillations near the pinch-off are shown to persist up to 1 K, in accordance
with the conventional theory of Coulomb blockade. The decrease of the charging energy
to 0.1 meV at G ∼ 6e2/h, as found in the calculations of the electrostatics, should lower
the limiting temperature for observing the oscillations in this range to ∼0.5 K. In reality the
measured temperature is still three times smaller [23]. We will explain this strong reduction
in section 3.5.

3.2. Comparing quantum dots of different types

To understand the difference between the dot under study (figure 6(a)) and a standard quantum
dot (where the constrictions are induced by two pairs of split gates and Coulomb oscillations
are observed only at G < e2/h), calculations of the electrostatics were also carried out for
the case in which the outermost 160 nm wide finger gates were separated by a 260 nm gap
(figure 6(b)). We will denote those devices as A and B, respectively. Except for the finger
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Figure 6. Comparison of potential profiles for two devices: ((a), (c), (e)) quantum dot with
overlying finger gates, type A; ((b), (d), (f )) quantum dot with broken finger gates, type B.
((c), (d)) The transverse cross section in the dot (x = 0, solid lines) and in the constrictions
(x = 270 nm, dashed lines). ((e), (f )) The longitudinal potential U(x, y = 0) shown by a thick
solid line and the three lowest 1D subbands En(x).

gates, all the parameters of devices A and B are the same. The calculated capacitances of the
quantum dot in closed and open states for cases A and B are similar. The essential differences
between the electrostatic potentials in the plane of the 2DEG only appear in the constrictions.
In device B, the barriers in the constrictions x = xc are lower, and the transverse cross section
of potential there resembles a deep and narrow parabola U(xc, y) = Uc + 1

2 mω2
cy

2 with energy
quantum h̄ωc = 0.6–0.8 meV (figures 6(d), 6(f )). The quantum in the centre of the channel
xd = 0 (the quantum dot) is 2–3 times smaller. In device A the transverse potential in the
constriction resembles a cut parabola (figure 6(c)), so the lowest 1D subbands are denser
near the bottom, like that in a rectangular potential well. When the quantum dot is open for
transmission via the first subband, the 1D subband spacing in device A is almost equal inside
the dot and constrictions: h̄ωc ≈ h̄ωd = 0.2–0.3 meV (figure 6(e)).

The energy levels of transverse quantization En(x) were determined from a solution of
the Schrödinger equation for the calculated electrostatic potential U(x, y) by a tight-binding
method [25, 26]. To impose zero boundary conditions for transverse motion, infinite walls
were put at 600 nm from the axis of the channel. The picture of 1D subbands shows how
the subband spacing changes along the channel axis and how many subbands are open for
transmission through the quantum dot at a given Fermi level.

Figures 6(e), 6(f ) show the positions of the three lowest 1D subbands En(x) for devices A
and B. The Fermi level is shown by a dotted line and corresponds to the zero energy. In
case A, the subband spacing is almost independent of x. This means that the transverse cross
sections of potential in the dot and in the constrictions have the same parabolic shape, in other
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words U(x, y) = U(x) + 1
2 mω2

cy
2. Then the variables x and y in the Schrödinger equation

are separated, and the motion along x- and y-directions is described by separate equations,
with no mixing between different 1D subbands. Thus the transmission problem reduces to a
one-dimensional one.

In contrast, in device B, where there is a gap between the finger gates, 1D subbands are
not equally spaced in energy and the inter-subband spacing changes by 2–3 times along the
channel (figure 6(f )). Thus the potential has such a shape that the variables in the Schrödinger
equation cannot be separated, the mixing between 1D subbands is strong and the motion is
essentially two-dimensional. Electron transmission can only be considered one-dimensional
when the first subband is opening and the transmission coefficient T < 1.

These assumptions of one-dimensional transmission in device A and two-dimensional
transmission in device B are supported by numerical calculations of multiple-mode trans-
mission, as described in the next subsection.

3.3. Electron transmission through quantum dots

Two-dimensional transmission was calculated on the same grid in variables (x, y) as was used
when the Poisson equation was solved for U(x, y). Along the channel axis x, energy levels En

in each transverse cross section and transfer-matrix elements between adjacent cross sections
were determined and then the multiple-mode transmission problem was solved by means of
scattering S-matrices [25, 26]. The conductance relates to the total transmission coefficient
according to the Landauer formula:

G = 2e2

h
T T =

∑
n

Tn Tn =
∑

k

|Tnk|2.

The transmission was calculated for quantum dots and single constrictions (half the
quantum dot). In figure 7(a) plots of the Fermi energy dependence of the total transmission
coefficient and its modal contributions are shown for device A. The dashed lines show the
transmission through single constrictions. When the first mode is 50% transmitted, the second
mode has already reached 30% and so on. For small values of the transverse quantum
h̄ω = E2 − E1 = 0.2 meV, conductance quantization is smeared out on a single constriction,
though it can occur for resonant transmission through two barriers in series. Transmissions
through the quantum dot are shown by the solid lines in figure 7. For device A the transmission
curves for the first to third subbands resemble each other but with an offset in energy caused
by the transverse quantum. Similar behaviour is observed in the split-gate-voltage dependence
of the transmission in figure 8, which models the experimental situation.

It is important that only a few resonant features are present in Tn(E) and Tn(VSG)—
those are Fabry–Pérot resonances in the system of two barriers. The narrowest resonances
are marked with triangles and relate to the tunnelling regime of the corresponding subbands;
they are smeared out in measurements and not visible in experiment since in this regime
the transport is sequential rather than coherent. In contrast, the wide resonances relate to
above-barrier coherent transmission (marked with asterisks) and give rise to every other step
of conductance quantization in figures 1–3. It seems that the conductance steps are not the
property of a single barrier, but the property of the pair of barriers (see figures 8 and 7(a)). The
difference in height of the barriers of 0.1–0.2 meV (weak asymmetry of the structure) causes
no subband mixing but reduces the conductance steps and shifts the resonances (e.g. the dotted
curve in figure 7). This asymmetry can explain the observed transformation of the background
conductance GRA(VSG) in figure 3(a). Firstly, the tops of the barriers in the constrictions
approach the Fermi level with a large negative voltage on the finger gates. The inevitable
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Figure 8. Calculated conductance and contributions of the lowest 1D subbands as functions of
side-gate voltage. The voltages on the finger gates are VF = −1.3 V and VF2 = 0. The dashed
line shows transmission for a single constriction.

small asymmetry between the two constrictions will be reflected in the transport properties as
reduced height of the steps and resonant peaks of the conductance. Secondly, smearing of the
features that occurs at lower negative voltages VSG, when VF1 and VF3 increase, is favoured by
widening of the constrictions in this voltage range, thereby reducing the inter-subband spacing
there. And lastly, a decrease of the transparency of the barriers increases the electron dwell time
in the dot and the role of decoherence, such that the constrictions start acting independently.
The quantized conductance steps for single constrictions smear out in this voltage regime as
shown by both measurements (see reference [27], figure 2(a)) and modelling (figures 7 and 8).
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The total transmission coefficient and modal distribution for device B are shown in
figure 7(b). Dashed curves show transmission with pronounced steps for a single constriction.
Because of the large subband spacing, the tunnelling in closed subbands is negligible. In
transmission through the dot, however, the transport may go via the higher subbands due to
mixing with lower open subbands. For instance, nonzero transmission via the third subband
occurs due to coupling to the first subband even if the second subband is not yet transmitted.
For 2e2/h < G < 6e2/h, the transport involves more than five modes and higher modes
contribute much more to the conductance than those in device A. The inter-subband mixing
shows up in the T (EF) dependence as sharp Fano resonances due to electron scattering from
the levels of the dot (figure 7(b)). The dependence T (VSG) is similar to T (EF): transmission
is one-dimensional at T < 1 and already multimodal at T > 1. It should be noted that while
1D subbands in device A become absolutely transparent (Tn = 1) with increasing energy or
VSG, the transparency of open subbands in device B changes resonantly from 0 to 80–90% due
to inter-subband mixing. This can explain why charging effects are smeared out at T > 1 in
more standard quantum dots.

Figure 9 shows the modelled dependence of the conductance on the central finger-gate
voltage G(VF2). The corresponding deformation of the potential in the dot and constrictions
was shown in figures 5(b), 5(c). The depth of the potential in the dot decreases, and the
resonances due to 1D interference on the two barriers cross the Fermi level one by one. The
calculated coherent transmission is shown in figure 9 by the solid curve from which the dashed
curve without sharp peaks is obtained by smoothing. Five wide Fabry–Pérot resonances are
clearly seen in the figure which are also present on the experimental curve (figure 1(a)).

-0.8 -0.6 -0.4 -0.2 0.0
0

1

2
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VF1 = VF3 = -1.37 V

G
   

(2
e2

/ h
)

VF2   (V)

Figure 9. Calculated conductance of the dot as a function of central finger-gate voltage VF2. The
dashed line shows the result of smoothing.

The fact that the number of frequent oscillations in experimental curves differs drastically
from the number of resonant features in the calculated transmission coefficients (figures 8
and 9) demonstrates that the observed frequent oscillations are not due to interference effects
of coherent electron transmission through quasi-discrete states of the quantum dot. In the
coherent regime an electron does not scatter on most levels in the absence of mode mixing. The
suppression of mode mixing is a consequence of the geometry of the dot and the corresponding
selected range of voltages at finger and side gates. Large negative voltage at overlying finger
gates flattens the potential across the channel with the result that the separation between the
lowest 1D subbands in the constrictions becomes as small as that in the dot (figure 6(e)).
Calculations of the transmission coefficients show that mode mixing is strengthened when the
conductance rises to G ≈ 6e2/h.
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3.4. The mechanism of single-electron charging of open quantum dots

On the basis of the modelling of the electrostatics and coherent transmission, we suggest the
following scenario of Coulomb charging in an open quantum dot. There are three important
features that the new type of dot possesses: (1) coupling between 1D subbands is suppressed;
(2) coherent transmission and sequential tunnelling coexist; (3) the charging energy and 1D
subband spacing in the constrictions are commensurate.

Suppression of inter-subband mixing implies the presence of localized states of closed
subbands against the background of current-carrying states. Weak sequential tunnelling causes
the recharging of localized states and leads to a modulation of the potential of the dot via
Coulomb blockade. Taking this modulation into account by means of the Landauer formula
will produce single-electron oscillations in the coherent ballistic current. The problem is to
relate the population of the delocalized states to the charge of the localized states. Below,
we describe how the modulation of the potential is calculated, also giving an account of this
relation, and suggest a modification of orthodox theory of Coulomb blockade (OTCB) for the
open quantum dot with suppressed 1D subband mixing. From the response of the transmission
coefficient to the change of the potential we obtain, with the help of the modified theory, the
gate-voltage dependence of the conductance containing single-electron oscillations.

If the 1D subbands in the quantum dot do not mix, then there are many localized states
near the Fermi level, with the background of 1–3 delocalized states (figure 10). In this case
the resonance peaks of the transmission coefficient only correspond to the open 1D subbands
(Fabry–Pérot resonances, figure 7(a)) while the localized states are not displayed since they
are too narrow. The decay of localized states via the open subbands has a low probability, so
the quantum fluctuations of charge in the dot are suppressed. The states of open and closed
1D subbands can be considered as two systems separated by effectively thick barriers. Due to
these barriers, the system of localized states of the open dot remains under the conditions where
the OTCB is applicable. That is, the localized states can capture an electron or return it to the
reservoir by means of sequential tunnelling through the effectively thick potential barriers.
Between the tunnelling events the system relaxes to one of several states of electrostatic
equilibrium. Each of these states is entirely described by the voltage difference Vb between
the dot and the reservoir with the 2DEG. In the limit of zero voltage between source and drain

localized states

delocalized states

EF

�Ω

�ω

 

Ex

Ey

Figure 10. A schematic drawing of single-particle levels of an open quantum dot with suppressed
inter-subband mixing. Ex and Ey denote the kinetic energy for motion along and across the dot,
respectively. The columns correspond to 1D subbands. The boundary between localized and
delocalized states is marked by the dotted line.
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reservoirs, the value Vb is determined from a simple electrostatic relation:

CVb = ne + CgVg + q0 (1)

where C = C1 + C2 + Cg, C1 and C2 are the reservoir–dot capacitances, n the number of
electrons in the localized states and q0 is a free parameter in the OTCB, called the polarization
charge of the Coulomb island. The value of q0, like that of CgVg, need not be an integer in units
of electron charge e. In the OTCB the polarization charge is assumed constant and describes
the interaction of the isolated dot (Coulomb island) with uncontrollable charges and dipoles.

In the limit of zero temperature, constant q0 would lead to a sharp step-like dependence
n(CgVg), where the overline implies averaging over the states of electrostatic equilibrium, and
hence a sawtooth modulation of Vb between −e/2C and e/2C as the value CgVg changes by
e. The system under study differs fundamentally from an isolated dot since q0 is not a free
parameter but depends self-consistently on the charge of the localized states ne. This requires
the theory of CB to be modified. In our case the role of polarization charge is played by the
charge that belongs to open subbands. This charge is defined by the population of transmitted,
or open 1D subbands (the ith subband is transmitted if its bottom Ei remains in the narrowest
part xc of the constriction below the Fermi level, Ei(xc) = U(xc) + h̄ω(i + 1

2 ), where U(xc)

is the top of electrostatic barrier; see figure 6(e)). The subbands are shifted when the voltage
drop between the dot and reservoirs Vb changes in response to recharging of localized states
by tunnelling or varied gate voltage.

We define the polarization charge as q0 = q00 +
∑

q0i , where q00 is constant and the
contribution q0i of the ith open subband is expressed in terms of the density of delocalized
states in 1D subbands (h̄�)−1 and subband occupation �Ei = EF − U(xc) − h̄ω(i + 1

2 ) as

q0i =
{

2e �Ei/h̄� �Ei > 0

0 �Ei � 0.
(2)

Here we use the approximation of a parabolic quantum dot with

U(x, y) ≈ U(0, 0) +
1

2
m∗(ω2y2 + �2x2).

To complete the set of equations we shall relate �Ei to Vb and Vg. We assume that the height
of the barrier in the constriction U(xc) is shifted by 1

2 eVb under the voltage drop Vb over the
barrier, U(xc) = U(xc)

∣∣
Vb=0 + 1

2 eVb.
We define the dependence �Ei(Vg) phenomenologically under the assumption that

Vg ≡ VSG and subbands open sequentially with equal steps δVg starting from Vg0; thus �Ei =
h̄ω[(Vg − Vg0)/δVg − i]. From modelling the electrostatics (figure 4, insets), h̄ω is known to
decrease by a factor of 2 as Vg changes by 2 δVg; that is, h̄ω = h̄ω0[ 1

2 (Vg − Vg0)/δVg + 1]−1,
where h̄ω0 corresponds to opening of the first subband. Therefore we eventually obtain

�Ei = −eVb

2
+ h̄ω0

(Vg − Vg0)/δVg − i
1
2 (Vg − Vg0)/δVg + 1

. (3)

Taking account of the thermal washing, the expression for q0 can now be written as

q0 = q00 +
2e

h̄�

∑
i

�Ei

1 − exp(−�Ei/kBT )
. (4)

Thus unlike in the OTCB, q0 is a function of Vb and Vg in our case, and the calculations with
equations (1)–(4) will give different results.

Figure 11(a) shows the calculation of the dot–reservoir voltage Vb(Vg) averaged over
possible charge states. One can see that single-electron oscillations are present at T = 50 mK
in the whole voltage range from −680 mV to −480 mV. The amplitude of the oscillations
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Figure 11. Modelling single-electron charging of quantum dots with suppressed inter-subband
mixing. (a) The sawtooth dependence of the voltage drop eVb over inlet/outlet barriers on split-gate
voltage VSG at different temperatures. (b) An illustration of subband filling: calculated conduct-
ance of the dot with Vb = 0. (c) Fragments of step-like dependences of the number of electrons
in the localized states of the quantum dot for relevant temperatures from the set {0.05, 0.15, 0.3,
0.5 and 1 K}. The enumeration in (c) is related to the conductance in (b): 1—Coulomb blockade,
2—transition to the open dot, 3—the first subband is fully transmitted, 4—the second subband is
fully transmitted.

corresponds to the charging energy EQ(Vg) of the localized states with account taken of the
population of open 1D subbands. On the left of the voltage range the dot is closed and the
amplitude of the oscillations reaches the value e/2C, the same as in Coulomb blockade theory.
To the right the amplitude decreases by more than an order of magnitude when the second 1D
subband is fully open. Actually this implies a respective decrease of the critical temperature at
which the charging effects are still observed, according to the rule EQ ∼ kBTc. The amplitude
of oscillations decreases in a step-like fashion as the 1D subbands successively open, each
giving a contribution of e2/h̄� to the effective capacitance of the dot. To illustrate the filling
of 1D subbands, figure 11(b) shows the conductance calculated using equation (5) with Vb = 0,
as will be discussed later. To show how the quantization of charge in the localized states of
the quantum dot is smeared out with increasing temperature, we provide the calculated n

(figure 11(c)) and Vb (figure 11(a)). For low temperature, the suggested model describes a
transition from Coulomb blockade to suppressed quantization of charge of the localized states
in open quantum dots, and this transition extends over the voltage range where the three lowest
1D subbands become successively occupied. The calculation also shows that the oscillations
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in Vb and steps in n completely disappear at T ≈ 0.3 K as soon as the first subband becomes
transmitted (figures 11(a), 11(c)). At T = 1 K the interval with oscillations shrinks, and no
oscillations are observed for T = 2 K which is the critical temperature for the isolated quantum
dot as discussed in reference [23].

3.5. Coulomb oscillations of ballistic conductance

On the basis of our model of charging, we have tested that if the effective barrier resistance
R > RQ = h/e2, the current of the sequential tunnelling would produce oscillations much
weaker than those measured experimentally. Hence the observed oscillations are determined
not only by the current through the localized states, but also by the ballistic current. In
section 3.2 we discussed the feature that the spacing of 1D subbands h̄ω in the constrictions
is approximately equal to the charging energy e2/2C = 0.1–0.2 meV, so we expected high
sensitivity of the coherent ballistic conductance to the variations of Vb. We have numerically
estimated that the transparency of the quantum dot changes by 0.3(e2/h) when Vb is varied
by only 0.1e/C (the bottom of the dot is raised by 0.1e2/C). Thus, the periodic change of the
embedded voltage Vb with gate voltage will result in single-electron conductance oscillations
in the coherent current. Therefore we calculated the ballistic conductance in the presence of
single-electron modulation of the electrostatic potential by employing an extended Landauer
formula which takes into account the probability distribution Pn of charge states:

G = 2e2

h

∑
n

Pn

∫ ∑
i

Ti(E, Vbn, Vg)F (E − EF) dE (5)

where F(E) = (1/4kBT ) sech2(E/2kBT ). We simplified the calculations by assuming that
Ti = T ∗

0 (E − �Ei(Vbn, Vg)), where T ∗
0 (E) is the transmission coefficient in the first subband

shown in figure 7(a). Reducing Ti to T ∗
0 is plausible with absence of inter-subband mixing

assumed. In reality, the phase breaking of the wave function that does not lead to capture
of ballistic electrons by localized states makes T ∗

0 take an intermediate value between the
coefficients of coherent transmission through a double barrier T2b and sequential transmission
through two barriers in series 1

2 T1b. The phase-breaking events become rarer with increase
of transparency of the single barrier T1b, so we used T ∗

0 = αT2b + 1
2 (1 − α)T1b with weight

coefficient α = T1b.
Figure 12(a) shows the results of conductance calculations carried out using the modified

(equation (5)) and usual (Vb = 0 and Ti independent of n) Landauer formulae. For low
temperatures the conductance G(Vg) calculated with no account taken of single-electron
charging is similar to that calculated in section 3.3 (figure 8) except for narrow features
which are smeared out here due to α. This similarity of the curves justifies reducing Ti to
T ∗

0 . The accounting for single-electron modulation of the potential results in single-electron
oscillations of ballistic conductance. At low temperatures the suggested model describes the
oscillations which are superimposed on broad Fabry–Pérot resonances and cover the range
0 < G < 6e2/h. The modulation of their amplitude is caused by increased sensitivity of the
conductance to the variations of Vb on the slopes of large-scale peaks. When the temperature
increases to T = 0.15 K the oscillations at G > 4e2/h are suppressed. At T = 0.3 K the
oscillations are already suppressed above 2e2/h and interference peaks are smoothed. At
T = 1 K the oscillations survive only for G < e2/h. Rapid disappearance of large-scale
peaks cannot be explained by just thermal broadening of the energy of incident particles;
another reason is single-electron modulation of the potential. With increasing temperature the
number of states participating in charging of the dot grows and the transmission coefficient as a
function of gate voltage is strongly averaged and smoothed. For comparison, figure 12(b) shows
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Figure 12. Calculated (a) and measured (b) conductance of the quantum dot as a function of split-
gate voltage. Dashed lines show conventional Landauer conductance, with no account taken of the
single-electron oscillations in Vb (Vb = 0). Solid curves demonstrate single-electron oscillations of
the conductance around Fabry–Pérot resonances, as obtained with (5) which involves dependence
of Vb on VSG and a probability distribution of charge states of the dot.

measured dependences G(Vg) for the same temperatures. One can see that the calculations are
in good agreement, reproducing all relevant features of the background and oscillations. Notice
that the period of single-electron oscillations in calculations fluctuates, �VSG = 3.8 ± 1 mV,
while in experiment it is �VSG = 3.6 ± 1 mV. The main difference from the experimental
plot is that the calculated curves have greater amplitude and are more pronounced, which is
a consequence of the simplified expression for q0 and the overestimated contribution of the
resonant transmission near the threshold. Despite such simplifications, the model correctly
reproduces critical temperatures for observing the oscillations.

We tried to model the charging of standard split-gated open quantum dots with strong
inter-subband scattering. In this case (figure 7(b)) there are many Fano resonances in Ttot(E)

and the number of quickly decayed states in open subbands is much greater than the number
of Fabry–Pérot resonances in the 1D system studied. Additionally, because of strong inter-
subband mixing, the third (i = 2) subband becomes partially transparent simultaneously with
the opening of the first (i = 0) subband. These two factors make the density of states (h̄�)−1 in
more standard quantum dots redistribute in favour of open subbands, in comparison with the 1D
case. In our model we incorporate this redistribution by increasing the effective capacitance
e2/h̄� of each open subband. We have found that decreasing h̄� by a factor of 2 makes
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the low-temperature oscillations of the conductance disappear as soon as the second subband
(i = 1) begins to open. On reducing h̄� to a third of the original value, the conductance
oscillations disappear as soon as the lowest subband (i = 0) opens. Hence, although the
model is developed for 1D systems and does not use quantum fluctuations of charge, it shows
that electrostatic interaction of charge in delocalized and localized states would suffice to
suppress Coulomb oscillations of conductance propagating into the region G > 2e2/h for
more standard quantum dots of the same size. Moreover, this calculation shows that increasing
the length of the dot would suppress single-electron oscillations at G > 2e2/h as well. In a
small quantum dot, on the other hand, Fabry–Pérot resonances are feebly marked, with large
spacing, so the ballistic conductance will sense single-electron modulation of the potential
and produce the related oscillations only on the slopes of the quantization steps, between the
conductance plateaux. This was the case, we suppose, when such oscillations were observed
up to G = 14e2/h in ballistic conductance of a small dot formed by an impurity potential [20].
Thus, the model that we suggested allows us to describe different extents of progression of
Coulomb oscillations into the quantum ballistic conductance depending on temperature, size
and dimensionality of the quantum dots.

4. Conclusions

In this paper we have confirmed the single-electron nature of conductance oscillations of
open quantum dots reported in reference [23], and clarified the mechanism of the effect. In
experiment the oscillations are proof against perpendicular magnetic field, as they should be
for single-electron charging. By means of calculations of capacitances of the dot to the gates
and 2DEG, we have found that the period of the oscillations corresponds to addition of a
single electron to the dot and the charging energy agrees with the measured temperature of
disappearance of conductance oscillations at G < e2/h. 3D calculations of the electrostatic
potential of the device, combined with solution of the 2D scattering problem, show that the
transport through this dot is almost one-dimensional, in contrast to the case for standard
split-gated quantum dots with strong inter-subband scattering. That the system studied is one-
dimensional means that inter-subband mixing is suppressed and the number of quasi-discrete
states in transmitted subbands (Fabry–Pérot resonances) is small. The larger part of the charge
of the dot belongs to the localized states of closed subbands and only changes in rare events of
sequential tunnelling. Quantum fluctuations of this charge are suppressed together with inter-
subband mixing. Since the number of delocalized states is small, the contribution of transmitted
subbands to charging of the dot is limited, and the charge of the localized states of closed 1D
subbands remains quantized at low temperatures. As a result, charging of the localized states
by a weak tunnelling current leads to single-electron modulation of the electrostatic potential
of the dot as the gate voltage is varied. According to the Landauer formula this modulation
gives rise to single-electron oscillations in ballistic conductance, added to the background
of quantization steps and interference resonances. It should be noted that in this 1D system
there is a weakly transparent effective barrier which separates the localized states of closed
subbands from the reservoirs. That is why it is difficult to observe the sharp equidistant peaks of
sequential tunnelling simultaneously with strong and smoothed oscillations of ballistic current.
Thus, we believe that in the system studied the effect of charge quantization is manifested in
the ballistic current. To model this effect quantitatively, we modified the conventional theory
of Coulomb blockade and the Landauer formula, and correctly reproduced single-electron and
interference features of ballistic conductance, including their smoothing and disappearance
with temperature.
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